Artboard 2 copy 35Artboard 64 copy 13Artboard 2 copy 19Artboard 2 copy 31Artboard 64 copy 18Artboard 64 copy 10Artboard 64 copy 11Artboard 64 copy 15Artboard 64 copy 12Artboard 64 copy 13Artboard 64 copy 14Artboard 2 copy 34Artboard 64 copy 19Artboard 64 copy 16MinusArtboard 2 copy 44Artboard 2 copy 38Artboard 2 copy 36PlusArtboard 64 copy 17Artboard 2 copy 43Artboard 2 copy 45Artboard 2 copy 46Artboard 64 copy 16Artboard 64 copy 18Artboard 64 copy 19Artboard 64 copy 17

Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

Tidsskriftartikel - 2017

Resume

Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO2)-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m(3) test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10(10)s(-1) and the mean mass emission rate was 381μgs(-1). The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h(-1) for <1μm-size and the deposited particles consisted of mainly TiO2, TiO2 mixed with Cl and/or Ag, TiO2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization.

Reference

Koivisto AJ, Jensen ACØ, Kling KI, Kling J, Budtz HC, Koponen IK, Tuinman I, Hussein T, Jensen KA, Nørgaard A, Levin DHM. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating. Journal of Hazardous Materials 2017;341:218-227.
doi: 10.1016/j.jhazmat.2017.07.045

Gå til Tidsskriftartikel

Relaterede projekter

Bæredygtige nanoteknologier (SUN)