Artboard 2 copy 35Artboard 64 copy 13Artboard 2 copy 19Artboard 2 copy 31Artboard 64 copy 18Artboard 64 copy 10Artboard 64 copy 11Artboard 64 copy 15Artboard 64 copy 12Artboard 64 copy 13Artboard 64 copy 14Artboard 2 copy 34Artboard 64 copy 19Artboard 64 copy 16MinusArtboard 2 copy 44Artboard 2 copy 38Artboard 2 copy 36PlusArtboard 64 copy 17Artboard 2 copy 43Artboard 2 copy 45Artboard 2 copy 46Artboard 64 copy 16Artboard 64 copy 18Artboard 64 copy 19Artboard 64 copy 17

Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes

Tidsskriftartikel - 2017


Carbon nanotube (CNT) is a nanomaterial that has received interest because of its high-tensile strength and low weight. Although CNTs differ substantially in physico-chemical properties, they share high aspect ratio which resembles that of asbestos and other fibers causing lung cancer and mesothelioma. One type of multi-walled CNTs (i.e. MWCNT-7) has been classified as possibly carcinogenic to humans by IARC (Group 2B) based on experimental animal data, whereas other types of MWCNTs and singlewalled CNTs (SWCNT) could not be classified due to lack of data from epidemiologic studies and insufficient mechanistic evidence. Damage to DNA is considered to be a key mechanistic step in the Development of fiber-induced cancer. Thus, the genotoxic potential can be a cornerstone in the evaluation of hazards of CNTs. The present study used a weight of evidence (WoE) analysis to evaluate the genotoxicity of different types of CNTs. Genotoxicity endpoints close to cancer (mutations and chromosome aberrations) and animal models had highest weight in the WoE analysis. Eight CNT materials out of 130, which had been assessed in several studies, were evaluated in the WoE analysis. The results demonstrated that MWCNT-7 has strongest WoE for a genotoxic hazard among the MWCNTs. Two types of SWCNTs have a similar WoE for genotoxicity as MWCNT-7. Several reference materials from the Joint Research Centre have less WoE for genotoxicity. The WoE analysis demonstrates a difference in genotoxicity for CNTs, but further research is required to unravel the physico-chemical characteristics that govern the differences in genotoxic hazard.


Møller P, Jacobsen NR. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Critical Reviews in Toxicology 2017;47(10):871-888.
doi: 10.1080/10408444.2017.1367755

Gå til Tidsskriftartikel

Relaterede projekter

Dansk Center for Nanosikkerhed