Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice

Tidsskriftartikel - 2019

Resume

BACKGROUND: Previous findings indicate that in utero exposure to nanoparticles may affect the reproductive system in male offspring. Effects such as decreased sperm counts and testicular structural changes in F1 males have been reported following maternal airway exposure to carbon black during gestation. In addition, a previous study in our laboratory suggested that the effects of in utero exposure of nanoparticles may span further than the first generation, as sperm content per gram of testis was significantly lowered in F2 males. In the present study we assessed male fertility parameters following in utero inhalation exposure to carbon black in four generations of mice.

RESULTS: Filter measurements demonstrated that the time-mated females were exposed to a mean total suspended particle mass concentration of 4.79 ± 1.86 or 33.87 ± 14.77 mg/m3 for the low and high exposure, respectively. The control exposure was below the detection limit (LOD 0.08 mg/m3). Exposure did not affect gestation and litter parameters in any generation. No significant changes were observed in body and reproductive organ weights, epididymal sperm parameters, daily sperm production, plasma testosterone or fertility.

CONCLUSION: In utero exposure to carbon black nanoparticles, at occupationally relevant exposure levels, via maternal whole body inhalation did not affect male-specific reproductive, fertility and litter parameters in four generations of mice.

Reference

Skovmand A, Jensen ACØ, Maurice C, Marchetti F, Lauvås AJ, Koponen IK, Jensen KA, Goericke-Pesch S, Vogel U, Hougaard KS. Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice. Particle and Fibre Toxicology 2019;16:13.
doi: 10.1186/s12989-019-0295-3

Gå til Tidsskriftartikel

Relaterede projekter

Dansk Center for Nanosikkerhed