Artboard 2 copy 35Artboard 64 copy 13Artboard 2 copy 19Artboard 2 copy 31Artboard 64 copy 18Artboard 64 copy 10Artboard 64 copy 11Artboard 64 copy 15Artboard 64 copy 12Artboard 64 copy 13Artboard 64 copy 14Artboard 2 copy 34Artboard 64 copy 19Artboard 64 copy 16MinusArtboard 2 copy 44Artboard 2 copy 38Artboard 2 copy 36PlusArtboard 64 copy 17Artboard 2 copy 43Artboard 2 copy 45Artboard 2 copy 46Artboard 64 copy 16Artboard 64 copy 18Artboard 64 copy 19Artboard 64 copy 17

Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide

Tidsskriftartikel - 2017

Resume

We investigated toxicity of 2-3 layered >1 μm sized graphene oxide (GO) and reduced graphene oxide (rGO) in mice following single intratracheal exposure with respect to pulmonary inflammation, acute phase response (biomarker for risk of cardiovascular disease) and genotoxicity. In addition, we assessed exposure levels of particulate matter emitted during production of graphene in a clean room and in a normal industrial environment using chemical vapour deposition. Toxicity was evaluated at day 1, 3, 28 and 90 days (18, 54 and 162 μg/mouse), except for GO exposed mice at day 28 and 90 where only the lowest dose was evaluated. GO induced a strong acute inflammatory response together with a pulmonary (Serum-Amyloid A, Saa3) and hepatic (Saa1) acute phase response. rGO induced less acute, but a constant and prolonged inflammation up to day 90. Lung histopathology showed particle agglomerates at day 90 without signs of fibrosis. In addition, DNA damage in BAL cells was observed across time points and doses for both GO and rGO. In conclusion, pulmonary exposure to GO and rGO induced inflammation, acute phase response and genotoxicity but no fibrosis.

Reference

Bengtson S, Knudsen KB, Orabi Kyjovská Z, Berthing T, Skaug V, Levin DHM, Koponen IK, Shivayogimath A, Booth TJ, Alonso B, Pesquera A, Zurutuza A, Thomsen BL, Troelsen JT, Jacobsen NR, Vogel U. Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS One 2017;12(6):e0178355.
doi: 10.1371/journal.pone.0178355

Gå til Tidsskriftartikel

Relaterede projekter

Gladiator Tox