Artboard 2 copy 35Artboard 64 copy 13Artboard 2 copy 19Artboard 2 copy 31Artboard 64 copy 18Artboard 64 copy 10Artboard 64 copy 11Artboard 64 copy 15Artboard 64 copy 12Artboard 64 copy 13Artboard 64 copy 14Artboard 2 copy 34Artboard 64 copy 19Artboard 64 copy 16MinusArtboard 2 copy 44Artboard 2 copy 38Artboard 2 copy 36PlusArtboard 64 copy 17Artboard 2 copy 43Artboard 2 copy 45Artboard 2 copy 46Artboard 64 copy 16Artboard 64 copy 18Artboard 64 copy 19Artboard 64 copy 17

Manganese exposure in foundry furnacemen and scrap recycling workers.

Tidsskriftartikel - 1999

Resume

Objectives: Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder that bears many similarities to Parkinson's disease. The aim of the study was to investigate the sources and levels of manganese exposure in foundry furnacemen by a combined measuring of blood-manganese (B-Mn) and manganese in ambient air (air-Mn). Methods: During a period of 16 months, Air-Mn and B-Mn (denoted `exposure values') were measured involving 24 furnacemen employed in three small size foundries and 21 scrap recycling workers from one plant. In the study period, 18 furnacemen had B-Mn measured 3-4 weeks after decreasing or stopping exposure (denoted `post-exposure values'). The reference group for the B-Mn measurements consisted of 90 Danish male subjects. Results: Furnacemen who work in insufficiently ventilated smelting departments inhale, absorb, and retain significant amounts of manganese in their blood (approx. 2.5-5 7g/l above reference values) despite a generally low measured airborne level of manganese fumes (0.002-0.064 mg/m3). The `exposure values' compared with `post-exposure values' revealed a significant decrease in the B-Mn (on average 3.7 7g/l) level of the most exposed furnacemen. Two persons in our study were suspected of suffering clinically subacute manganese intoxication as both had B-Mn levels beyond the normal limit (25 and 29 7g/l, respectively). The potential problem disappeared completely after cessation of exposure, and the B-Mn levels decreased to 9.4 and 14.1 7g/l, respectively. Conclusions: Risk assessment based on combined measurements of B-Mn and air-Mn seems to be valid in the interpretation of workers' hazard. Our study indicates that B-Mn may be a valuable parameter for estimating recent exposure (within 1-2 weeks). However, more knowledge is needed about the B-Mn level and its relation to neurological symptoms.

Reference

Lander F, Kristiansen J, Lauritsen J. Manganese exposure in foundry furnacemen and scrap recycling workers.. Int Arch Occup Environ Health 1999;72(8):546-550.
doi: 10.1007/s004200050414

Gå til Tidsskriftartikel