Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content

Tidsskriftartikel - 2013

Resume

Black tattoo inks are composed of carbon nanoparticles, additives and water and may contain polycyclic aromatic hydrocarbons (PAHs). We aimed to clarify whether reactive oxygen species (ROS) induced by black inks in vitro is related to pigment chemistry, physico-chemical properties of the ink particles and the content of chemical additives and contaminants including PAHs. The study included nine brands of tattoo inks of six colours each (black, red, yellow, blue, green and white) and two additional black inks of different brands (n=56). The ROS formation potential was determined by the dichlorofluorescein (DCFH) assay. A semiquantitative method was developed for screening extractable organic compounds in tattoo ink based on gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Two black inks produced high amounts of ROS. Peroxyl radicals accounted for up to 72% of the free radicals generated, whereas hydroxyl radicals and H2O2 accounted for

Reference

Høgsberg T, Jacobsen NR, Clausen PA, Serup J. Black tattoo inks induce reactive oxygen species production correlating with aggregation of pigment nanoparticles and product brand but not with the polycyclic aromatic hydrocarbon content. Experimental Dermatology 2013;22(7):464-469.
doi: 10.1111/exd.12178

Gå til Tidsskriftartikel

Relaterede projekter

Dansk Center for Nanosikkerhed

NFA logo

Det Nationale Forskningscenter for Arbejdsmiljø | Lersø Parkallé 105 | 2100 København Ø. | T: 39 16 52 00 | F: 39 16 52 01 | M: nfa@nfa.dk | CVR: 15 41 37 00